Report of a subcommittee on the nomenclature of n-dimensional crystallography. II. Symbols for arithmetic crystal classes, Bravais classes and space groups.

نویسندگان

  • T Janssen
  • J L Birman
  • F Dénoyer
  • V A Koptsik
  • J L Verger-Gaugry
  • D Weigel
  • A Yamamoto
  • S C Abrahams
  • V Kopsky
چکیده

The Second Report of the Subcommittee on the Nomenclature of n-Dimensional Crystallography recommends specific symbols for R-irreducible groups in 4 and higher dimensions (nD), for centrings, for Bravais classes, for arithmetic crystal classes and for space groups (space-group types). The relation with higher-dimensional crystallographic groups used for the description of aperiodic crystals is briefly discussed. The Introduction discusses the general definitions used in the Report.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ron Lifshitz and N. David Mermin

To demonstrate the power of the Fourier-space approach to crystallography, the Bravais classes and © 1994 International Union of Crystallography Printed in Great Britain all rights reserved space groups of hexagonal and trigonal quasiperiodic crystals are derived for lattices of arbitrary finite rank. The specification of the space groups for each Bravais class is given by an elementary extensi...

متن کامل

The revival of the Bravais lattice.

The 14 Bravais-lattice types are at the very heart of crystallography, learned in Chapter 1 of any introductory course on the topic. It is somewhat remarkable that, in the second decade of the 21st century, we may still learn new things about them, but Hans Grimmer's paper Partial order among the 14 Bravais types of lattices: basics and applications (Grimmer, 2015) does this and provides us wit...

متن کامل

ar X iv : h ep - t h / 91 10 04 3 v 1 1 5 O ct 1 99 1 Copernican Crystallography

Redundancies are pointed out in the widely used extension of the crystallographic concept of Bravais class to quasiperiodic materials. Such pitfalls can be avoided by abandoning the obsolete paradigm that bases ordinary crystallography on microscopic periodicity. The broadening of ordinary crystallography to include quasiperiodic materials is accomplished by defining the point group in terms of...

متن کامل

Low dimensional flat manifolds with some classes of Finsler metric

Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.

متن کامل

Methods of space-group determination - a supplement dealing with twinned crystals and metric specialization.

Tables for the determination of space group for single crystals, twinned crystals and crystals with a specialized metric are presented in the form of a spreadsheet for use on a computer. There are 14 tables, one for each of the Bravais-lattice types. The content of the tables is arranged so that at the intersection of rows, displaying the conditions for reflection, and of columns, displaying th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta crystallographica. Section A, Foundations of crystallography

دوره 58 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2002